🟢 Cohere Models
Cohere specializes in enterprise-grade language models with a focus on retrieval-augmented generation (RAG), multilingual capabilities, and production-ready APIs. Their models excel at understanding context and generating human-like text.
🌟 Why Choose Cohere?
Cohere Advantages
📊 Available Models
Model | Context Window | Best For | Input Cost | Output Cost |
---|---|---|---|---|
Command R+ | 128K tokens | Enterprise, RAG, reasoning | $15/1M tokens | $60/1M tokens |
Command R | 128K tokens | General purpose, RAG | $3/1M tokens | $15/1M tokens |
Command | 32K tokens | General purpose | $0.5/1M tokens | $1.5/1M tokens |
Command Light | 32K tokens | Fast, cost-effective | $0.1/1M tokens | $0.3/1M tokens |
Source: Cohere Pricing
🚀 Getting Started
Step 1: Create Cohere Account
- Visit Cohere Console
- Sign up with your email
- Verify your account
- Complete profile setup
Step 2: Get API Key
- Go to API Keys section
- Click "Create API Key"
- Give it a descriptive name
- Copy the key and store securely
Step 3: Configure in MCP for WP
- Go to MCP for WP > Settings
- Set Provider to "Cohere"
- Enter your API key
- Select default model (e.g.,
command
) - Click "Test Connection"
- Save settings
⚙️ Model Configuration
Default Settings
json
{
"model": "command",
"max_tokens": 2048,
"temperature": 0.7,
"top_p": 0.9,
"top_k": 0,
"frequency_penalty": 0.0,
"presence_penalty": 0.0
}
Parameter Guide
Model Selection
command-r-plus
: Best for enterprise, RAG, complex reasoningcommand-r
: Good for RAG and general purposecommand
: Balanced performance and costcommand-light
: Fast, cost-effective for simple tasks
Max Tokens
- Range: 1 to 4096 (varies by model)
- Recommendation: Start with 2048, adjust as needed
Temperature
- Range: 0.0 to 1.0
- 0.0: Deterministic
- 0.7: Balanced
- 1.0: Creative
Top P
- Range: 0.0 to 1.0
- 1.0: All tokens
- 0.9: Top 90% probability mass
Top K
- Range: 0 to 100
- 0: Disabled (default)
- Higher values: More diverse outputs
Frequency Penalty
- Range: 0.0 to 1.0
- 0.0: No penalty
- Higher values: Reduce repetition
Presence Penalty
- Range: 0.0 to 1.0
- 0.0: No penalty
- Higher values: Encourage new topics
💰 Pricing & Usage
Cost Structure
Model | Input Cost | Output Cost | Free Tier |
---|---|---|---|
Command R+ | $15/1M tokens | $60/1M tokens | $5 credit |
Command R | $3/1M tokens | $15/1M tokens | $5 credit |
Command | $0.5/1M tokens | $1.5/1M tokens | $5 credit |
Command Light | $0.1/1M tokens | $0.3/1M tokens | $5 credit |
Usage Limits
Plan | Rate Limit | Monthly Limit |
---|---|---|
Free Tier | 5 requests/second | $5 credit |
Pay-as-you-go | 100 requests/second | No limit |
Enterprise | Custom | Custom |
Source: Cohere Quotas
Cost Optimization Tips
- Use Command Light for simple tasks
- Choose appropriate model for task complexity
- Monitor token usage
- Use RAG for knowledge-intensive tasks
🔧 Advanced Configuration
Retrieval-Augmented Generation (RAG)
Cohere excels at RAG applications. Configure your tool to use external knowledge:
json
{
"input_schema": {
"type": "object",
"properties": {
"query": { "type": "string", "description": "User question" },
"context": { "type": "string", "description": "Retrieved context" }
},
"required": ["query", "context"]
}
}
System Instructions
json
{
"system_instruction": "You are a helpful assistant."
}
Function Calling
json
{
"tools": [
{
"type": "function",
"function": {
"name": "search_database",
"description": "Search knowledge base",
"parameters": {
"type": "object",
"properties": {
"query": { "type": "string" }
}
}
}
}
]
}
🛠️ Use Cases & Examples
Knowledge Base Q&A
Tool Configuration:
json
{
"input_schema": {
"type": "object",
"properties": {
"question": { "type": "string", "description": "User question" },
"knowledge_base": { "type": "string", "description": "Relevant documents" },
"style": { "type": "string", "enum": ["concise", "detailed", "technical"] }
},
"required": ["question", "knowledge_base"]
}
}
Recommended Settings:
- Model:
command-r-plus
- Temperature: 0.3
- Max Tokens: 1024
Content Generation
Tool Configuration:
json
{
"input_schema": {
"type": "object",
"properties": {
"topic": { "type": "string", "description": "Topic to write about" },
"style": { "type": "string", "enum": ["professional", "casual", "creative"] },
"length": { "type": "string", "enum": ["short", "medium", "long"] }
},
"required": ["topic"]
}
}
Recommended Settings:
- Model:
command
- Temperature: 0.8
- Max Tokens: 2048
Multilingual Tasks
Tool Configuration:
json
{
"input_schema": {
"type": "object",
"properties": {
"text": { "type": "string", "description": "Text to process" },
"source_language": { "type": "string", "description": "Source language" },
"target_language": { "type": "string", "description": "Target language" },
"task": { "type": "string", "enum": ["translate", "summarize", "analyze"] }
},
"required": ["text", "target_language"]
}
}
Recommended Settings:
- Model:
command-r
- Temperature: 0.5
- Max Tokens: 2048
🔍 Troubleshooting
Common Issues
- API Key Invalid: Check Cohere dashboard
- Rate Limit Exceeded: Check usage limits
- Model Not Available: Verify model name
- Context Too Long: Reduce input length
Debugging Tips
- Check API key in Cohere dashboard
- Monitor usage and billing
- Review request logs in MCP for WP
- Test with Cohere playground
- Check quotas and limits
Performance Optimization
- Use appropriate model size
- Optimize prompt length
- Implement caching
- Use RAG for knowledge tasks
📚 Additional Resources
🔐 Security Best Practices
- Keep API keys secure
- Monitor usage for anomalies
- Use environment variables
- Implement rate limiting
- Regular security audits
📞 Support
Ready to get started? Configure your Cohere integration or explore other providers!